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Abstract

Flow in porous media is typically modeled at a length scale, referred to as the macroscale, such that a
point of the system encompasses tens to hundreds of pore diameters. For such a system description,
thermodynamic equilibrium conditions involve equality of the temperatures and chemical potentials of
the system components at a point as well as mechanical conditions expressing an equilibration of forces
at interfaces between phases and at common lines where interfaces come together. These force balances
must be expressed in terms of macroscale thermodynamic variables and are obtained here. In addition,
perturbations from the equilibrium state involve changes in the macroscale variables describing the
amount of volume of a phase, area of an interface, or length of common line per volume of the system.
A variational analysis provides the expressions for independent variations of these quantities, important
information for completion of a continuum mechanical description of the system physics involving
exploitation of the entropy inequality. # 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Porous media; Multiphase; Thermodynamics; Averaging theory; Continuum mechanics; Interfacial area;
Unsaturated ¯ow

1. Introduction

The primary problem to be considered here relates to the determination of the conditions of
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equilibrium for ¯ow of two immiscible ¯uids in a porous medium. This situation will be
referred to as two-phase ¯ow because the solid phase, although it may deform slightly, does
not ¯ow in the same sense that the ¯uids do. Such ¯ow systems may be studied at di�erent
scales. The microscale is a continuum length scale that is much smaller than the diameter of a
pore. Studies at the microscale would consider ¯ow pro®les within the pores of the juxtaposed
phases that are separated by interfaces. These interfaces could meet at common lines (if there
are at least three phases present), and the common lines could meet at common points (when
there are four or more phases present). Boruvka and Neumann (1977) have studied general
multiphase systems at the microscale and determined conditions of thermodynamic and
mechanical equilibrium.
On the other hand, the study of two-phase ¯ow in naturally occurring media and in the

laboratory is typically carried out at a macroscale, a length scale on the order of tens to
hundreds of pore diameters. To obtain conservation equations at this scale, averaging theorems
for the phases (Whitaker, 1967; Anderson and Jackson, 1967; Gray and Lee, 1977) have been
employed such that quantities appearing in the equations (i.e., density, velocity, etc.) are in fact
average values from a region surrounding a point of interest. This approach has been extended
by Gray and Hassanizadeh (1989) and Gray et al. (1993) to include averaging theorems for
interfacial properties and common lines. Gray and Hassanizadeh (1998) have used a
localization approach to develop conservation equations for phases, interfaces, common lines,
and common points (which will be referred to collectively as components) at the macroscale.
Any macroscale point in the system will have values of velocity, and other properties, for each
component. Note that this is conceptually di�erent from the continuum microscale wherein, for
example, only one phase will be present at a point and thus only one velocity. At this scale,
phases are juxtaposed. In contrast, at a macroscale point, values of a property corresponding

Fig. 1. Fluid reservoir with two capillary tubes of di�erent diameters.
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to each system component exist and a geometric density is assigned to each component
(volume per volume for a phase, area per volume for an interface, line length per volume for a
common line, or number of points per volume for common points) to complete the
characterization of the system. At any macroscale point the geometric densities are important
parameters, and their presence in the conservation equations for macroscale systems is one of
the chief features that distinguishes macroscale analysis from microscale analysis.
Important issues involve determination of equilibrium conditions for a macroscale

thermodynamic system and relations among changes in the geometric densities near
equilibrium. In this study, the macroscale thermodynamic equations will be investigated to
obtain conditions of mechanical equilibrium. The approach to be followed is based on that
employed by Boruvka and Neumann (1977) and Gaydos et al. (1996) for microscale systems
and follows from the macroscale entropy inequality for two-phase ¯ow derived by Gray (1999).

2. Motivation and need

The need for thermodynamic equilibrium relations at the macroscale can be seen by
considering the simple system depicted in Fig. 1. The ®gure depicts two glass capillary tubes of
di�erent diameters that are inserted into a reservoir of ¯uid (designated as the w phase) that
preferentially wets the tubes compared to air (denoted as n, or non-wetting, phase). For
convenience, let the contact angle between the ¯uid and the glass be zero. Thus the interfaces
between the two ¯uids within the capillary tubes are essentially hemispherical. At the interface
between the ¯uids in each tube, the capillary pressure is given by:

pc � ÿswnjwwn �1�
where swn is the microscale interfacial tension, jwwn � rs � nw is the interfacial curvature with nw

being the unit normal on the interface positive outward from the w phase, and rs is the
sur®cial operator used to take the sur®cial divergence. For the present case where the interface
is a hemisphere, jwwn � ÿ2=R at each point on the interface when R is the radius of the tube. In
the smaller tube, the capillary rise is higher, the curvature of the interface is greater, and the
capillary pressure is greater. Indeed, when looking at the interface in each of the tubes,
determination of the interfacial curvature, and thus the capillary pressure, is straightforward.
On the other hand, if one has to consider the capillary tubes as part of a system, it is not at all
clear what should be identi®ed as the `capillary pressure' of that system. Certainly the
interfaces within the tubes would contribute to such a determination as might the curvature of
the interface between the ¯uids exterior to the capillary tubes. In any event, a de®nition of the
`capillary pressure' would be subject to interpretation, even for the simple system in the ®gure.
The concept of capillary pressure in a porous medium is far more complex than that for a

simple system composed of several capillary tubes. Hassanizadeh and Gray (1993) have
considered some of the similarities and di�erences between capillary pressure as viewed from
the micro- and macroscales. Despite that e�ort, and those of other researchers (e.g.,
Kalaydjian, 1987; Pavone, 1989) the comment of Scheidegger (1974) still holds true: ``A
consistent theory of capillary pressure in porous solids should provide an explanation of the
fundamental relationship between saturation and capillary pressure (or interfacial curvature).
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To date, this does not seem to have been obtained.'' One of the aspects of porous media ¯uids
that precludes the simple de®nition of capillary pressure is the fact that, in contrast to the
capillary tube where the interface adopts its shape without in¯uence of the solid, the shape of
the ¯uid±¯uid interface in a porous system is impacted by the solid. For example, when a thin
®lm coats a solid, the curvature of the interface between the two ¯uids will be a function of the
shape of the solid as well as of the interaction of the adjacent ¯uids. Thus, although one can
examine the curvature at every point on the ¯uid±¯uid interface from the microscale
perspective and obtain values of the capillary pressure, a macroscale description of the
capillary pressure, including tens of pores, requires that these point e�ects be somehow
integrated.
At the microscale, thermodynamic equilibrium conditions may be obtained. For example, the

pressure di�erence between two ¯uids at a point on an interface between the ¯uids is equal to
the capillary pressure. If one is to successfully apply macroscale theories to the description of
multiphase ¯ows in porous media, it is necessary to derive analogous mechanical conditions for
equilibrium. These conditions must apply at the macroscale, and there seems to be no obvious
way to infer these conditions as an integrated e�ect of the microscale conditions. Thus, the
purpose of the present manuscript is to obtain porous media scale conditions of macroscale
thermodynamic equilibrium. The variational procedure followed makes use of the quantities
related to the geometry of the distribution of phases in a porous medium. These quantities,
referred to as geometric densities since they involve amounts of phase volume, interfacial area,
and common line length per system volume, do not exist at the microscale; and thus the
equilibrium conditions must be derived from the thermodynamics postulated at the macroscale.

3. Microscale energy equations for a three-phase system

Consideration of the energy state of a system composed of two ¯uids (the w and n phases)
and a solid (the s phase) requires that the energy associated with the phases, interfaces, and
common lines be accounted for. For an a-phase, where a � w, n, or s, the microscale internal
energy per volume is expressed according to the standard thermodynamic relation (Callen,
1985; Bailyn, 1994):

ea�Za,rai� � yaZa ÿ pa �
X
i

mairai �2�

where ea is the microscale internal energy per volume, ya is the microscale temperature, Za is
the microscale entropy per volume, pa is the microscale pressure in the a-phase, rai is the
microscale mass of species i per unit volume of phase a, and mai is the microscale chemical
potential of species i in the a-phase. For this relation, the temperature and chemical potential
are de®ned, respectively, as:

ya � @ea
@Za

�3a�

and:
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mai �
@ea
@rai

�3b�

The density of the phase is related to the species densities by:

ra �
X
i

rai �4�

Although it is possible to derive the solid phase pressure using the Lagrangian strain tensor
(Bailyn, 1994), this extension will not signi®cantly alter the derivation of the equilibrium
conditions that follows.
The total energy of the phase per volume at equilibrium includes the gravitational potential

energy ja which is related to the gravitational acceleration according to g � ÿrja: Therefore,
total microscale energy per volume for the a-phase is:

eaT � ea �
X
i

raija � ea � raja �5�

For an ab interface separating the a- and b-phases, where ab � wn, ws, or ns, the microscale
internal energy per area, eab, is expressed according to the classical relation:

eab�Zab,rabi� � yabZab � sab �
X
i

mabirabi �6�

where yab is the microscale temperature, Zab is the microscale entropy per area, sab is the
interfacial tension of the ab interface, rabi is the microscale mass of species i per unit area of
interface ab, and mabi is the microscale chemical potential of species i in the ab interface. For
this relation, the temperature and chemical potential are de®ned by:

yab � @eab
@Zab

�7a�

and:

mabi �
@eab
@rabi

�7b�

The mass density of the interface is obtained from the species densities as:

rab �
X
i

rabi �8�

Here, following Gibbs (1948), the microscale interfacial energy is considered to be independent
of the curvature of the interface. Boruvka and Neumann (1977) and Boruvka et al. (1985) have
provided an extension to this expression that includes the dependence of interfacial energy on
the ®rst and second curvatures as microscale independent variables. They have shown that this
is necessary for interfaces with very high curvature, a situation that will be neglected here. The
total energy density of the interface at equilibrium includes the gravitational potential energy
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jab which is related to the gravitational acceleration according to g � ÿrjab: Therefore, total
microscale energy per area for the ab interface is:

eabT � eab �
X
i

rabijab � eab � rabjab �9�

For a wns common line, the microscale internal energy per common line length is:

ewns�Zwns,rwnsi� � ywnsZwns ÿ swns �
X
i

mwnsirwnsi �10�

where ywns is the microscale temperature, Zwns is the microscale entropy per unit length, swns is
the lineal tension, rwnsi is the microscale mass of species i per unit length of common line, and
mwnsi is the microscale chemical potential of species i in the line. Boruvka and Neumann (1977)
have included some of the microscale geometric properties of the common line as independent
variables, but these e�ects will be considered small. For this equation, the temperature and
chemical potential are de®ned by:

ywns � @ewns
@Zwns

�11a�

and:

mwnsi �
@ewns
@rwnsi

�11b�

The mass density of the phase is described by:

rwns �
X
i

rwnsi �12�

The total energy per unit length of a point on the common line at equilibrium includes the
gravitational potential energy jwns, which is related to the gravitational acceleration according
to g � ÿrjwns: Therefore, total microscale energy per length for the wns common line is:

ewnsT � ewns �
X
i

rwnsijwns � ewns � rwnsjwns �13�

The relations for the energy in this section will be used in conjunction with a variational
analysis to determine the necessary conditions for microscale thermodynamic equilibrium. This
will be done after considering the counterparts to these energy equations obtained from a
macroscale perspective.

4. Macroscale energy equations for a three-phase system

At the macroscale, energies for the phases, interfaces and common line will all be expressed
on a per unit averaging volume basis. Since each component occupies only a portion of that
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volume, this must be accounted for in the list of independent variables. Additionally, because
the integration to the macroscale involves a loss of information concerning the actual
geometric con®guration that is observable at the microscale, the possibility exists that one or
more additional independent variables will be required to describe the internal energy
dependence. These variables will be included in the list of variables along with appropriate
potentials. Additionally, the notational convention will be adopted such that superscripts will
be used with macroscale variables where subscripts were used with their microscale
counterparts. A microscale idealization of a three-phase system in provided in Fig. 2. Note that
in actuality the notation aab will be used to indicate the amount of interfacial area between the
a- and b- phases per averaging volume and lwns will denote the common line length per volume.
For the a-phase, the macroscale internal energy per volume is expressed according to the

relation:

Fig. 2. Schematic diagram of a three-phase wns system as viewed from the microscale perspective. Phases, interfaces,
and common line are indicated as are some of the unit vectors of importance in the analysis.
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Ê
aÿ
Ẑa,ea,earai

�
� yaẐa ÿ paea �

X
i

mairaiea �14�

where ya is the macroscale temperature, Ẑa is the macroscale entropy of the a-phase per
averaging volume, pa is the macroscale pressure in the a-phase, ea is the volume fraction of a-
phase (i.e., the volume of a-phase per averaging volume), rai is the macroscale mass of species i
per volume of phase a within an averaging volume, and mia is the macroscale chemical potential
of species i in the a-phase. Based on Eq. (14), the temperature, pressure, chemical potential,
and additional potentials are obtained as:

ya � @Ê
a

@ Ẑa
�15a�

pa � ÿ@Ê
a

@ea
�15b�

and

mai � @Ê
a

@
ÿ
earai

� �15c�

The macroscale mass density of the phase is obtained from the species densities as:

ra �
X
i

rai �16�

The total energy of the phase at equilibrium includes the gravitational potential energy ja

which is related to the gravitational acceleration according to g � ÿrja: Therefore, the total
macroscale a-phase energy per macroscale volume is:

Ê
a
T � Ê

a �
X
i

earaija � Ê
a � earaja �17�

For an ab interface, the macroscale internal energy per unit system volume is:

Ê
abÿ

Ẑab,aab,aabrabi
�
� yabẐab � sabaab �

X
i

mabirabiaab �18�

where yab is the macroscale temperature, Ẑab is the macroscale entropy of the ab interface per
macroscale volume, sab is the macroscale surface tension of the ab interface, aab is the area of
the ab interface per averaging volume, rabi is the macroscale mass of species i per unit area of
ab interface, and mabi is the macroscale chemical potential of species i in the ab interface. Based
on Eq. (18), the temperature, interfacial tension, and chemical potentials are obtained as:

yab � @Ê
ab

@ Ẑab
�19a�

W.G. Gray / International Journal of Multiphase Flow 26 (2000) 467±501474



sab � @Ê
ab

@aab
�19b�

and:

mabi � @Ê
ab

@
ÿ
aabrabi

� �19c�

The macroscale mass density of the interface is the mass per unit area and is given by:

rab �
X
i

rabi �20�

The total energy of the interface at equilibrium includes the gravitational potential energy
jab where g � ÿrjab: Therefore, the total macroscale energy of the ab interface per
macroscale volume is:

Ê
ab
T � Ê

ab �
X
i

aabrabijab � Ê
ab � aabrabjab �21�

For a wns common line, the macroscale internal energy per macroscale volume of the
mixture is expressed according to the relation:

Ê
wnsÿ

Ẑwns,lwns,lwnsrwnsi
�
� ywnsẐwns ÿ swnslwns �

X
i

mwnsirwnsilwns �22�

where ywns is the macroscale temperature, Ẑwns is the macroscale entropy of the wns common
line per volume, swns is the macroscale lineal tension of the wns common line, lwns is the length
of the wns common line per macroscale volume, rwnsi is the macroscale mass of species i per
unit length of wns common line, and mwnsi is the macroscale chemical potential of species i on
the wns common line. Based on Eq. (22), the temperature, lineal tension, chemical potential,
and additional potentials are de®ned, respectively, as:

ywns � @Ê
wns

@ Ẑwns
�23a�

swns � ÿ@Ê
wns

@ lwns
�23b�

and:

mwnsi � @Ê
wns

@
ÿ
lwnsrwnsi

� �23c�

The macroscale mass density of the common line is the mass per unit length and is given by:
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rwns �
X
i

rwnsi �24�

The total energy of the common line at equilibrium includes the gravitational potential
energy jwns, where g � ÿrjwns: Therefore, the total macroscale energy of the wns common line
per volume:

Ê
wns

T � Ê
wns �

X
i

lwnsrwnsijwns � Ê
wns � lwnsrwnsjwns �25�

The total energy per unit volume at a macroscale point is obtained as the sum of the
energies of the phases, interfaces, and common line at that point:

ET � Ê
w

T � Ê
n

T � Ê
s

T � Ê
wn

T � Ê
ws

T � Ê
ns

T � Ê
wns

T �26�
This is di�erent from the microscale perspective where the energy at a point is described by a
single phase, interface, or common line present at that point.

5. The variational expressions

The variational problem to be considered is designed to determine the thermodynamic and
mechanical constraints such that the system will be at a state of minimum energy at
equilibrium. This problem is attacked by considering portions of the domain isolated from
other portions. Since the derivations of variational equations for phase, interface, and common
line properties distract from the central theme of this paper, they are provided in Appendix A.
The results are indicated here for continuity of the text.
The variation of the total amount of a property of the a-phase within a system of interest is

obtained in Eq. (A14) as:

dBa �
�

V
�dB̂

a
dV �

�
V

�
1

V

�
V a

��dba dV

�
dV�

�
V

"X
b6�a

1

V

�
Aab

badxxx � na
ab dA

#
dV �27�

In this expression, V is the total volume of the system, V is the averaging volume whose size,
shape, and orientation is independent of position in the system, V a is the volume of a-phase
within the averaging volume, and Aab is the boundary between the a- and b-phases within the
averaging volume. The unit vector na

ab is normal to the ab interface and oriented positive
outward from the a-phase (e.g. see ns

ws in Fig. 2). The microscale quantity of interest, ba is a
function of position as well as of other quantities. A location in space r is written in terms of
the location of the centroid of the averaging volume, x, and the location relative to that
centroid, xxx, as r � x� xxx: The microscale density of the quantity of interest, ba, is thus a
function of x� xxx, the macroscale quantity, B̂

a
is a function of x, and the total of the property

for the entire system, Ba, is independent of space. In the equation, the variation �d is a

variation holding the x coordinates constant and
��d is a variation taken holding both x and xxx

constant. Thus both variations are ®xed point in that the variations are taken holding the
spatial coordinates constant. In Eq. (27), the quantity after the ®rst equal sign is of importance
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in obtaining the macroscale conditions of equilibrium while the quantity after the second equal
sign is important for obtaining equilibrium conditions at the microscale.
The variation of the total amount of a property of an ab interface within a system of interest

is obtained in Eq. (A29) as:

dBab �
�

V
�dB̂

ab
dV �

�
V

�
1

V

�
Aab

��dsbab dA

�
dV

�
�

V

�
1

V

�
Aab

babrxxx � na
abdxxx � na

ab dA

�
dV�

�
V

�
1

V

�
C wns

babdxxx � nnnabwns dC

�
dV

�28�

In this equation, C wns is the total length of the common line within an averaging volume. The
unit vector nnnabwns is normal to the common line, oriented tangent to and pointing outward from
the ab interface (For example, see nnnwnwns in Fig. 2). The new variation in this equation is

��ds
which is a ®xed point variation holding the x coordinates and the microscale sur®cial
coordinates constant. The variation of the total amount of an interface property near
equilibrium is expressed in terms of the macroscale situation using the ®rst equal sign and in
terms of the microscale variation using the second equal sign in Eq. (28).
For the common line, the variational equation is derived as Eq. (A38):

dBwns �
�

V
�dB̂

wns
dV �

�
V

�
1

V

�
C wns

��dcbwns dC

�
dV

ÿ
�

V

�
1

V

�
C wns

bwnslll � rlll � dxxx dC

�
dV

�29�

The variation in this equation,
��dc is ®xed point holding the macroscale coordinates constant

and the coordinate along the curve constant. In addition, the microscale unit vector lll which is
tangent to the common line appears in this equation. Note that lll � rlll is the microscale
curvature of the common line.

6. Equilibrium conditions for a two-phase system

For purposes of illustration, a two-phase system will be analyzed to obtain both the
microscopic and macroscopic equilibrium constraints. The development will be patterned after
that of Boruvka and Neumann (1977) who have obtained microscale constraints for multiphase
systems. The unconstrained problem that must be solved is the minimization of the functional:

F � ET ÿ TSÿ
X
i

MiMi �30�

where T and Mi are Lagrange multipliers, ET is the total energy of the system, S is the total
entropy, and Mi is the total mass of species i in the system. The minimization problem may be
expressed as:
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dF � dET ÿ TdSÿ
X
i

MidMi � 0 �31�

If a system is composed of two-phases designated as the w and n phases, there will be no
common lines and Eq. (31) may be stated as:

dFw � dFn � dFwn � 0 �32�

Thus, variational equilibrium considerations will involve only Eqs. (27) and (28) without
integration over a common line. The microscale variational problem involves the integrals of
the microscale quantities as derived in the second equalities of Eqs. (27) and (28) such that use
of the microscale counterparts to Fw, Fn, and Fwn in Eq. (32) provides the minimization
problem in the form:

X
a�w,n

�
V

�
1

V

�
V a

��dfa dV

�
dV�

X
a�w,n

�
V

�
1

V

�
Awn

fadxxx � na
wn dA

�
dV

�
�

V

�
1

V

�
Awn

��dsfwn dA

�
dV�

�
V

�
1

V

�
Awn

fwnrxxx � nw
wndxxx � nw

wn dA

�
dV � 0

�33�

Substitution of the elements that comprise the microscale functionals fw, fn, and fwn and
considering only the integrand of the global integral gives:

X
a�w,n

�
V a

��d

"
ea � raja ÿ TZa ÿ

X
i

Mirai

#
dV

�
X
a�w,n

�
Awn

"
ea � raja ÿ TZa ÿ

X
i

Mirai

#
dxxx � na

wn dA

�
�
Awn

��ds

"
ewn � rwnjwn ÿ TZwn ÿ

X
i

Mirwni

#
dA

�
�
Awn

"
ewn � rwnjwn ÿ TZwn ÿ

X
i

Mirwni

#
rxxx � nw

wndxxx � nw
wn dA � 0

�34�

Application of the ®xed point variations and substitution of the expressions for the microscale
energy as given in Eqs. (2) and (6) yields:
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X
a�w,n

�
V a

"
�ya ÿ T���dZa �

X
i

�ja � mai ÿMi���dria
#

dV

�
X
a�w,n

�
Awn

"
�ya ÿ T�Za �

X
i

�ja � mai ÿMi�rai ÿ pa

#
dxxx � na

wn dA

�
�
Awn

"
�ywn ÿ T���dsZwn �

X
i

ÿ
jwn � mwni ÿMi

���dsrwni# dA

�
�
Awn

"
�ywn ÿ T�Zwn �

X
i

ÿ
jwn � mwni ÿMi

�
rwni � swn

#
rxxx � nw

wndxxx � nw
wn dA � 0

�35�

In this equation, the multipliers of the variations of entropy and the mass densities must be
zero if the equation is to apply for arbitrary variations such that two condition of equilibrium
are:

T � yw � yn � ywn �36�
and:

Mi � jw � mwi � jn � mni � jwn � mwni �37�
The ®rst equation is the condition for thermal equilibrium and the second is the condition for
chemical equilibrium. With these conditions employed, Eq. (35) simpli®es to:�

Awn

�
pn ÿ pw � swnrxxx � nw

wn

�
dxxx � nw

wn dA � 0 �38�

where use has been made of the fact that nw
wn � ÿnn

wn: The quantity rxxx � nw
wn is the curvature of

the interface based on a normal pointing out from the w phase such that the ®nal equilibrium
constraint is:

pn ÿ pw � jwwnswn � 0 �39a�
where:

jwwn � rxxx � nw
wn �39b�

and jwwnswn is the capillary pressure. Condition (39a) is a classical result known as the Young±
Laplace equation. This is the condition for mechanical equilibrium that supplements the
thermal and chemical equilibrium constraints.
Next the macroscale equilibrium conditions will be examined with respect to Eqs. (27) and

(28). Application of the ®rst equality in these equations transforms Eq. (32) into a variational
problem in terms of macroscale quantities:�

V
�dF̂

w
dV�

�
V

�dF̂
n

dV�
�

V
�dF̂

wn
dV � 0 �40�
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Substitution of the elements that comprise the macroscale functional expands this equation to:�
V

�d

 
Ê
w � ewrwjw ÿ TẐw ÿ

X
i

Miewrwi
!

dV

�
�
V

�d

 
Ê
n � enrnjn ÿ TẐn ÿ

X
i

Mienrni
!

dV

�
�

V
�d

 
Ê
wn � awnrwnjwn ÿ TẐwn ÿ

X
i

Miewnrwni
!

dV � 0

�41�

Now apply the ®xed point variations to expand these expressions using the functional
dependence of energy on independent variables indicated in Eqs. (14) and (18) to obtain:�

V

"
�yw ÿ T��dẐw �

X
i

ÿ
jw � mw ÿMi

�
�d
ÿ
ewrwi

�
ÿ pw �dew

#
dV

�
�

V

"
�yn ÿ T��dẐn �

X
i

ÿ
jn � mn ÿMi

�
�d
ÿ
enrni

�
ÿ pn �den

#
dV

�
�

V

"
�ywn ÿ T��dẐwn �

X
i

ÿ
jwn � mwn ÿMi

�
�d
ÿ
awnrwni

�
� swn �dawn

#
dV � 0

�42�

The thermal and chemical equilibrium conditions are obtained by setting the coe�cients of the
entropy and density variations to zero and are analogous to those at the microscale:

T � yw � yn � ywn �43�
and:

Mi � jw � mwi � jn � mni � jwn � mwni �44�
In fact, these relations indicate that microscopic and macroscopic equilibrium temperatures and
chemical potentials are equal. With these conditions imposed, the residual of the variational
equation is:�

V

�
ÿ pw �dew ÿ pn �den � swn �dawn

�
dV � 0 �45�

From this equation, it is clear that if the variations in volume fractions and area density are
independent, the equilibrium condition is that each of the macroscale pressures and the
interfacial tension must be zero. Since experimental observations indicate that this is not the
case, the variations of the various geometric quantities must be somehow related. These
relations are determined by examining the variations in terms of their microscale precursors.
First of all, based on Eq. (27), with bw � bn � 1, the variations of each of the volume
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fractions may be expressed, respectively, as:

�dew � 1

V

�
Awn

dxxx � nw
wn dA �46a�

and:

�den � 1

V

�
Awn

dxxx � nn
wn dA �46b�

Since nw
wn � ÿnn

wn it must be true that:

�den � �dew � 0 �47�
This expression may be considered obvious in that the de®nition of the volume fraction
dictates that the sum of the two void fractions must equal 1 at all times. However, it is worth
noting that relation (47) has been developed here using much di�erent reasoning based on the
variational analysis and is applied only at near equilibrium conditions.
Based on Eq. (28) with bwn � 1, the relation for the variation of the areal density may be

obtained. For the two-phase case, there is no common line so the expression for �dawn is:

�dawn � 1

V

�
Awn

rxxx � nw
wndxxx � nw

wn dA �48�

Inspection of this equation reveals that for the case of spherical interfaces of uniform
curvature, the quantity rxxx � nw

wn will not depend on xxx and could be removed from the
integrand. This would provide an immediate relation between �dawn and �dew: In the more
general case where the interface is not necessarily spherical, a macroscale variable J w

wn may be
introduced such that it can be moved inside of the integral over the microscale areal
coordinates. Thus Eq. (46a) may be written:

J w
wn

�dew � 1

V

�
Awn

J w
wndxxx � nw

wn dA �49�

Subtraction of Eq. (49) from Eq. (48) yields:

�dawn ÿ J w
wn

�dew � 1

V

�
Awn

ÿrxxx � nw
wn ÿ J w

wn

�
dxxx � nw

wn dA �50�

Thus J w
wn is a measure of the macroscale curvature and can be selected such that the right side

of Eq. (50) is zero and:

�dawn ÿ J w
wn

�dew � 0 �51�
Based on insights from Eqs. (47) and (51) such that �den and �dawn may each be expressed in

terms of �dew, Eq. (45) is rearranged to the near-equilibrium form:�
V

hÿ
pn ÿ pw � swnJ w

wn

�
�dew
i

dV � 0 �52�
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For the integral to be zero for any variation of ew and also independent of the size of the
system considered, the macroscale equilibrium condition is:

pn ÿ pw � swnJ w
wn � 0 �53�

where swnJ w
wn is the macroscale capillary pressure. Although this equation is clearly similar in

form to the microscale equilibrium condition derived previously as Eq. (39a), in fact it is quite
di�erent in interpretation. First, although this equation looks like its microscopic counterpart,
the quantities are macroscopic values characteristic of an averaging volume. Thus equilibrium
relation (53) is not merely a direct average of its microscale counterpart as has been asserted,
for example, in Nitao and Bear (1996). In fact, no averaging of pressure or interfacial tension
was performed to obtain Eq. (53) as these quantities are de®ned directly at the macroscale.
Second, whereas the microscopic capillary pressure is de®ned as the product of the

microscale interfacial tension and the microscale curvature (which is a function of the actual
geometry of the interface) the macroscopic capillary pressure is seen to be de®ned uniquely as
the product of the macroscale interfacial tension and a measure of the macroscale curvature of
the interfaces within the averaging volume. Thus, macroscale curvature cannot be expressed in
terms of microscale variables but is actually a function of the volume fraction and the area
density. This assertion may be seen quantitatively by working with the total grand canonical
potential of the system, ÔT, de®ned using Legendre transformations on the total internal
energy (Callen, 1985; Gray, 1999) such that:

ÔT � Ô
w

T � Ô
n

T � Ô
wn

T �54a�
where:

Ô
a
T

ÿ
ya,ma � ja,ea

� � Ê
a ÿ yaẐa ÿ ÿma � ja�eara � ÿpaea a � w,n �54b�

Ô
wn

T

ÿ
ywn,mwn � jwn,awn

� � Ê
wn ÿ ywnẐwn ÿ ÿmwn � jwn

�
awnrwn � swnawn �54c�

When equilibrium conditions (43) and (44) are enforced, the di�erential change in the total
grand canonical potential is:

dÔTjy,m�j �
ÿ
pn ÿ pw

�
dew � swn dawn �55�

Comparison of Eqs. (55) and (53) provides the relation for the macroscale e�ective curvature
in terms of macroscale variables as:

J w
wn �

�
@awn

@ew

�
y,m�j,ÔT

�56�

This is quite di�erent in substance from its microscale counterpart, Eq. (39b). Finally, the near
equilibrium relation (51) between changes in macroscale volume fractions and interfacial areal
densities can be used to gain additional insight into transient processes and constitutive
relations needed for the study of dynamic systems at the macroscale.
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7. Equilibrium conditions for a general three-phase system

In the analysis of two-phase systems, the microscale situation was examined primarily to
demonstrate the contrast with the macroscale case. For the three-phase system, the analysis
presented here will be restricted to the macroscale case. The study will nevertheless require that
the microscale geometry of the system be transformed so that it can be accounted for from the
macroscale perspective. In particular it is important to consider the microscale angles at which
the interfaces meet at a common line, as depicted in Fig. 3.
For a multiphase system, the constraints that result for thermal and chemical potential

equilibrium are direct extensions of those for the two-phase case found in Eqs. (43) and (44).
These conditions state that at all macroscale points of the system in all phases, interfaces,
common lines, and common points, the temperatures must be equal; and the chemical plus
gravitational potentials must be equal. The part of the equation that remains to be examined
for mechanical equilibrium for a three-phase system is:�

V
�dÔTjy,m�j dV �

�
V

�
ÿ pw �dew ÿ pn �den ÿ ps �des � swn �dawn � sws �daws � sns �dans

ÿ swns �dlwns
�

dV � 0

�57�

To obtain the conditions of equilibrium, the dependence of the variations that appear in this
equation on each other must be ascertained such that the integrand on the right side is zero.
For the volume fractions, the three equations that express their variations are obtained

based on Eq. (27) with ba � 1 for each a-phase as:

�dew � 1

V

�
Awn

dxxx � nw
wn dA� 1

V

�
Aws

dxxx � nw
ws dA �58a�

�den � 1

V

�
Awn

dxxx � nn
wn dA� 1

V

�
Ans

dxxx � nn
ns dA �58b�

and:

Fig. 3. Three phase w, n, s system with interfaces between phases (dark curves) and angles of intersection, ca, at the
common line indicated.
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�des � 1

V

�
Aws

dxxx � ns
ws dA� 1

V

�
Ans

dxxx � ns
ns dA �58c�

Because na
ab � ÿn

b
ab these three variational expressions for the volume fractions are actually

written in terms of three independent integrals involving the variation dxxx:
For the interfaces, the equations for the macroscale area densities are based on Eq. (28) with

bab � 1 and have the forms:

�dawn � 1

V

�
Awn

rxxx � nw
wndxxx � nw

wn dA� 1

V

�
C wns

dxxx � nnnwnwns dC �59a�

�daws � 1

V

�
Aws

rxxx � ns
wsdxxx � ns

ws dA� 1

V

�
C wns

dxxx � nnnwswns dC �59b�

and:

�dans � 1

V

�
Ans

rxxx � ns
nsdxxx � ns

ns dA� 1

V

�
C wns

dxxx � nnnnswns dC �59c�

To make use of these relations, it is useful to de®ne macroscale curvatures, J a
ab�x� which are

thus functions of the macroscale coordinates but are constants with respect to the integrations
over xxx coordinates such that:

1

V

�
Aab

ÿrxxx � na
ab ÿ J a

ab
�
dxxx � na

ab dA � 0 �60�

Additionally, it is useful to express the three di�erent unit vectors that appear in the integrals
over the common line in terms of an orthonormal pair of unit vectors according to:

nnnwnwns � cos cwnnnwswns ÿ sin cwns
ws �61a�

and:

nnnnswns � cos csnnn
ws
wns � sin csn

s
ws �61b�

Now introduce a pair of macroscale function types that will be de®ned by:

1

V

�
C wns

ÿ
cos ca ÿ cos Ca�dxxx � nnnwswns dC � 0 �62a�

and:

1

V

�
C wns

ÿ
sin ca ÿ sin Ca�dxxx � ns

ws dC � 0 �62b�

The macroscale functions of x designated as cos Ca and sin Ca are conceptually some average
cosine and sine functions of the microscale angle ca along the common line within an
averaging volume. However, these are not true sine and cosine functions because their sum
squared is not necessarily equal to 1 for all distributions of angles that could exist within an
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averaging volume. The notation adopted is used to indicate the interpretation of the functions
that appear. Use of Eqs. (60)±(62b) in Eqs. (59a)±(59c) provides:

�dawn � J w
wn

�
1

V

�
Awn

dxxx � nw
wn dA

�
� cos Cw

�
1

V

�
C wns

dxxx � nnnwswns dC

�

ÿ sin Cw

�
1

V

�
C wns

dxxx � ns
ws dC

� �63a�

�daws � J s
ws

�
1

V

�
Aws

dxxx � ns
ws dA

�
�
�
1

V

�
C wns

dxxx � nnnwswns dC

�
�63b�

�dans � J s
ns

�
1

V

�
Ans

dxxx � ns
ns dA

�
� cos Cs

�
1

V

�
C wns

dxxx � nnnwswns dC

�

� sin Cs

�
1

V

�
C wns

dxxx � ns
ws dC

� �63c�

The integrals over the areas that appear in these expressions have already appeared in Eqs.
(58a)±(58c) for the variations of the void fractions. Two di�erent additional integrals appear
over the common line. Thus the variations of the six volume and areal geometric densities are
expressible in terms of ®ve independent variations.
The variational expression for the common line length per volume is obtained from Eq. (28)

for the case where bwns � 1 such that:

�dlwns � ÿ 1

V

�
C wns

lll � rlll � dxxx dC �64�

where lll is the tangent to the common line and lll � rlll is the curvature of the line. This vector is
orthogonal to lll such that it can be expressed in terms of any pair of orthornormal vectors that
are normal to the common line. For instance, in terms of the pair of vectors nnnwswns and ns

ws:

lll � rlll � ÿlll � rlll � nnnwswns�nnnwswns � ÿlll � rlll � ns
ws

�
ns
ws �65�

Substitution of this equation into Eq. (64) gives the form of the variational expression:

�dlwns � ÿ 1

V

�
C wns

ÿ
lll � rlll � nnnwswns

�
nnnwswns � dxxx dCÿ 1

V

�
C wns

ÿ
lll � rlll � ns

ws

�
ns
ws � dxxx dC �66�

In these two integrals, the ®rst quantity in parentheses is the microscale geodesic curvature,
kg�x� xxx� while the second quantity in parentheses is the microscale normal curvature,
kn�x� xxx�, with respect to the ws interfacial surface. E�ective macroscale geodesic and normal
curvatures, indicated as kG�x� and kN�x� respectively can be de®ned such that:

1

V

�
C wns

hÿ
lll � rlll � nnnwswns

�ÿ kG
i
nnnwswns � dxxx dC � 0 �67a�
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and:

1

V

�
C wns

hÿ
lll � rlll � ns

ws

�ÿ kN
i
ns
ws � dxxx dC � 0 �67b�

Making use of these relations in Eq. (66), one obtains:

�dlwns � ÿkG

�
1

V

�
C wns

nnnwswns � dxxx dC

�
ÿ kN

�
1

V

�
C wns

ns
ws � dxxx dC

�
�68�

This expression does not contain any integrals that have not already appeared in the
expressions (63a) through (63c) for the interfacial areas. Thus the variations in the seven
geometric densities at equilibrium conditions may be expressed in terms of ®ve independent
variations. Therefore, there will be ®ve equilibrium conditions and two relations among the
variations in the geometric densities.
Substitution of Eqs. (58a)±(58c), (63a)±(63c), and (68) into the integrand of Eq. (57) yields:

dÔTjy,m�j �
�ÿ pw � pn � swnJ w

wn

�� 1
V

�
Awn

dxxx � nw
wn dA

�
� �pw ÿ ps � swsJ s

ws

�
�
�
1

V

�
Aws

dxxx � ns
ws dA

�
� �pn ÿ ps � snsJ s

ns

�� 1
V

�
Ans

dxxx � ns
ns dA

�

�
�
swncos Cw � sws � snscos Cs � swnskG

�� 1
V

�
C wns

nnnwswns � dxxx dC

�

�
�
ÿ swnsin Cw � snssin Cs � swnskN

�� 1
V

�
C wns

ns
ws � dxxx dC

�
� 0

�69�

For the equality to be satis®ed, each of the coe�cients of the integral variations must be zero.
Thus the equilibrium conditions for a general three-phase system are:

ÿpw � pn � swnJ w
wn � 0 �70a�

pw ÿ ps � swsJ s
ws � 0 �70b�

pn ÿ ps � snsJ s
ns � 0 �70c�

swncos Cw � sws � snscos Cs � swnskG � 0 �70d�

ÿswnsin Cw � snssin Cs � swnskN � 0 �70e�
The two equilibrium relations among variations in the geometric properties may be obtained
from manipulation of Eqs. (58a)±(58c), (63a)±(63c) and (68) as:

�dew � �den � �des � 0 �71a�
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and:

�
kNJ s

ns � J s
ws
�kNcos Cs ÿ kGsin Cs��n�dawn ÿ J w

wn
�dew
o

�
h
kNJ w

wn ÿ J s
ws

ÿ
kNcos Cw � kGsin Cw

�in
�dans ÿ J s

ns
�des
o

ÿ
h
J w
wn
�kNcos Cs ÿ kGsin Cs� � J s

ns

ÿ
kNcos Cw � kGsin Cw

�i
�daws

� �J w
wnsin Cs ÿ J s

nssin Cw ÿ J s
wssin�Cs �Cw���dlwns � 0

�71b�

With these relations employed, the integrand in Eq. (57) may be rearranged to obtain the
equilibrium expression:

h
J s
ws

ÿ
kNcos Cw � kGsin Cw

�
ÿ kNJ w

wn

i
�dÔTjy,m�j �

�ÿ pw � pn � swnJ w
wn

�
�
hÿ
kNcos Cw � kGsin Cw

��
J s
ws

�dew � �daws
�
ÿ kN �dawn � sin Cw �dlwns

i
� �pw ÿ ps � swsJ s

ws

�hÿ
kNcos Cw � kGsin Cw

�
�daws � kN

�
J w
wn

�dew ÿ �dawn
�
� sin Cw �dlwns

i
� �pn ÿ ps � snsJ s

ns

�hÿ
kNcos Cw � kGsin Cw

��
ÿ J s

ws
�dew ÿ J s

ws
�daws

�
� kN

�
J w
wn

�den � �dawn
�
ÿ sin Cw �dlwns

i
�
�
swncos Cw � sws � snscos Cs � swnskG

�
�
h
kN
�
J s
ws

�dawn ÿ J w
wn

�daws ÿ J s
wsJ

w
ws

�dew
�
ÿ J s

wssin Cw �dlwns
i

�
�
ÿ swnsin Cw � snssin Cs � swnskN

�
�
hÿ
J w
wn ÿ J s

wscos Cw
�
�dlwns ÿ kG

�
J w
wn

�daws � J s
ws

�dawn ÿ J w
wnJ

s
ws

�dew
�i
� 0

�72�

The utility of this equation is that it provides the equilibrium thermodynamic situation as
being composed of a sum of ®ve products of terms, for which each factor is zero at
equilibrium. This quality can be useful in studying dynamic systems.
It may seem reasonable that the above relations can be considered to hold for the case where

one of the phases is a solid. However, this is not so. In fact, the above manipulations were
performed where the degenerate cases, such as when any of the angles is an integer multiple of
p=2, have been ignored. Since the case of a solid phase and two immiscible ¯uids is an
important one, and is also a degenerate case of the above analysis, it will be treated explicitly
in the next section.
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8. Mechanical equilibrium for two ¯uids and one solid phase

Consideration of this system follows along the lines of the previous analysis, but some of the
unique characteristics of a solid are incorporated. (58a)±(58c), (63a)±(63c), and (68) provide the
initial forms for the variations of the geometric quantities. The solid phase is considered to be
smooth such that Cs � p: Then, a variational expression may be written for the total solid
phase as a sum of Eqs. (63b) and (63c):

�das � �daws � �dans � J s
ws

�
1

V

�
Aws

dxxx � ns
ws dA

�
� J s

ns

�
1

V

�
Ans

dxxx � ns
ns dA

�
�73�

Alternatively, a variational expression may be obtained for as directly using Eq. (27) as:

�das � J s

�
1

V

�
As

dxxx � ns dA

�
�74�

where J s is the e�ective curvature of the solid phase surface, ns is the unit normal on the solid
surface, and As � Aws � Ans is the total solid phase surface. The e�ective curvature is
reasonably considered to be a weighted average of J s

ws and J s
ns according to the expression:

J s � xws
s J s

ws � xns
s J

s
ns �75�

where xws
s is the fraction of the solid phase surface in contact with the w phase and xns

s is the
fraction of the solid phase surface in contact with the n phase such that xws

s � xns
s � 1:

Substitution of Eq. (75) into Eq. (74) and subtraction of the result from Eq. (73) yields:

0 � J s
ws

�
1

V

�
Aws

dxxx � ns
ws dAÿ xws

s

1

V

�
As

dxxx � ns dA

�

� J s
ns

�
1

V

�
Ans

dxxx � ns
ns dAÿ xns

s

1

V

�
As

dxxx � ns dA

� �76�

For this equation to hold for all cases, the variations must be related according to:

xns
s

1

V

�
Aws

dxxx � ns
ws dA � xws

s

1

V

�
Ans

dxxx � ns
ns dA �77�

With these conditions imposed, Eq. (69), for a solid being one of the three phases, is:
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dÔTjy,m�j �
�
pn ÿ pw � swnJ w

wn

�� 1
V

�
Awn

dxxx � nw
wn dA

�

� �xws
s pw � xns

s p
n ÿ ps � xws

s swsJ s
ws � xns

s s
nsJ s

ns

�� 1

xws
s V

�
Aws

dxxx � ns
ws dA

�

�
�
swncos Cs � sws ÿ sns � swnskG

�� 1
V

�
C wns

nwswns � dxxx dC
�

� �swnskN ÿ swnsin Cw �
�
1

V

�
C wns

ns
ws � dxxx dC

�
� 0

�78�

For the equality to be satis®ed for the variation around equilibrium, the coe�cients of the
integrals must each be zero so that when one phase of a three-phase system is a solid, four
mechanical equilibrium conditions result (rather than the ®ve conditions for the more general
case):

pn ÿ pw � swnJ w
wn � 0 �79a�

xws
s pw � xns

s p
n ÿ ps � xws

s swsJ s
ws � xns

s s
nsJ s

ns � 0 �79b�

swncos Cw � sws ÿ sns � swnskG � 0 �79c�

swnskN ÿ swnsin Cw � 0 �79d�
Since there are seven geometric parameters and only four independent variations, there must

be three variational relations involving only the geometric parameters. Although these relations
may be derived directly, it is more convenient to work with parameters that are commonly
employed in porous media studies. The three volume density parameters, ew,en, and es, are
related to the porosity, e, and the saturations of each of the ¯uids, sw and sn, respectively by:

es � 1ÿ e �80a�

ew � esw �80b�

en � esn �80c�
where sw � sn � 1: Also the area densities of the solid phases are related to the total solid
surface area and the fraction of the area in contact with each phase according to:

aws � xws
s as �81a�

ans � ÿ1ÿ xws
s

�
as �81b�

Thus with the seven geometric parameters transformed to e,sw,sn,as,xws
s ,awn, and lwns, the three
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relations among the parameters are derived as:

�dsw � �dsn � 0 �82a�

�das � J s �de � 0 �82b�
and:

�dawn ÿ eJ w
wn

�dsw ÿ as
�

cos Fw � kGsin Cw

kN

�
�dxws

s ÿ
sin Cw

kN
�dlwns

�
�
J w
wn

ÿ
xws
s ÿ sw

�ÿ xws
s xns

s

ÿ
J s
ws ÿ J s

ns

��
cos Cw � kGsin Cw

kN

��
�de � 0

�82c�

With these relations, the integrand in Eq. (57) may be rearranged to the form:

�dÔTjy,m�j � ÿ
�
xws
s pw � xns

s p
n ÿ ps � xws

s swsJ s
ws � xns

s s
nsJ s

ns

��
�de
�

� �pn ÿ pw � swnJ w
wn

�h
e�dsw � ÿsw ÿ xws

s

�
�de
i

�
�
swncos Cw � sws ÿ sns � swnskG

�h
as �dxws

s � xns
s x

ws
s

ÿ
J s
ws ÿ J s

ns

�
�de
i

ÿ 1

kN
�swnskN ÿ swnsin Cw �

h
�dlwns � kGas �dxws

s � kGxns
s x

ws
s

ÿ
J s
ws ÿ J s

ns

�
�de
i

�83�

This arrangement provides the set of four products of pairs of terms in square brackets. For
these products, the ®rst of each pair is zero at equilibrium by Eqs. (79a)±(79d) and the second
in each product is an independent variation.
All terms in these equilibrium constraints are thermodynamic variables. The de®nitions of

the macroscale curvatures and angles may be obtained from the functional dependence of the
grand canonical potential on the geometric densities by taking derivatives while holding some
parameters constant so that an equilibrium condition is recovered. Then a term by term
comparison of the equilibrium condition with the result obtained from the di�erentiation
processes leads to the following de®nitions:

J s
ws � ÿ

�
@as

@e

�
en,awn,ans,lwns,Ô,y,m�j

�84a�

J s
ns � ÿ

�
@as

@e

�
ew,awn,aws,lwns,Ô,y,m�j

�84b�

J w
wn �

1

e

�
@awn

@sw

�
e,as,xws

s ,lwns,Ô,y,m�j
�84c�
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cos Cw � 1

as

�
@awn

@xws
s

�
e,sw,as,Ô,y,m�j

�84d�

kG � ÿ 1

as

�
@ lwns

@xws
s

�
e,sw,asÔ,y,m�j

�84e�

sin Cw

kN
� ÿ

�
@awn

@ lwns

�
e,sw,as,xws

s ,Ô,y,m�j
�84f�

9. Discussion of results

The preceding analysis has provided a basis for the study of the thermodynamic behavior of
multiphase systems at the macroscale by deriving the conditions for mechanical equilibrium in
such systems. In particular, since porous media ¯ow is typically studied at a scale
encompassing tens to hundreds of pore diameters, it is important to have conditions for
equilibrium at that scale as well as some information concerning which variations in the
position of the interface between phases and of the location of the common line are
independent. It is worthwhile to examine each of the four conditions of equilibrium obtained
for a system composed of a solid and two ¯uids, as listed in Eqs. (79a)±(79d), and indicate
some of the insights into physical processes that they provide.
Eq. (79a) is an important macroscale relation that leads to the de®nition of the capillary

pressure at the macroscale. Since capillary pressure is the di�erence between the nonwetting
and wetting phase pressures, the de®nition of macroscale capillary pressure is:

Pc � ÿswnJ w
wn �85�

This equation is the macroscale analogue of Eq. (1). However, at the macroscale the expression
for J w

wn is not obtained directly from the curvature at points on the interface but from Eq.
(84c) as the change of interfacial area between ¯uid phases with respect to the change in
volume of the wetting phase. It is important to note that although Pc is traditionally tabulated
as a non-unique function of saturation, in fact it seems to depend on the interfacial area and
common line densities as well. Failure to include these dependences may account for the non-
uniqueness of the plots of capillary pressure vs. saturation.
Eq. (79b) indicates that the macroscale equilibrium solid phase pressure is equal to a sum of

the e�ects of wetting and non-wetting phase pressures and the ¯uid sold interfacial tension
e�ects weighted by the fraction of the solid phase surface in contact with each ¯uid. This is a
physically reasonable result and represents an extension to the form of the equilibrium relation
typically employed for e�ective stress in a solid (Bishop, 1959; Fredlund and Rahardjo, 1993;
Lewis and Schre¯er, 1998; Hassanizadeh and Gray, 1990; Gray, 1999) in which the equilibrium
pressure of the solid phase is a weighted sum of the ¯uid phase pressures with a typical
weighting being the saturation. This older approximate formulation is likely reasonable in
many cases and is simpler to work with because of its use of saturations rather than aerial
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fractions (i.e., it does not require that one solve for surface aerial fractions). Indeed, when the
solid phase deformation is of negligible importance, the weighting coe�cients for the ¯uid
pressures are not signi®cant to the description of the ¯uid ¯ow. However, if the deformation of
the solid is of primary interest, the extended expression for the solid pressure in terms of the
adjacent ¯uid and interface properties may be important.
The microscale analogue to Eq. (79c) may be obtained as a balance of forces tangent to the

surface on a common line but is usually given for porous media without accounting for the
line tension (e.g. Schiegg, 1986). When the balance is made in a vertical capillary tube, the
geodesic curvature is zero and thus the usual equation is complete without line tension e�ects.
The macroscale parameter cos Cs accounts for the e�ective contact angle between the wetting
phase and the solid in the porous medium. It is related to the macroscale aerial densities of the
wn interface and the ws interface through Eq. (84d). Note that variable contact angles may be
accounted for as the macroscale term listed as a `cos' function is actually a measure of relative
changes in surface area.
Eq. (79d) is actually a macroscale force balance on a contact line in the direction normal to

the surface. To understand its physical meaning, it is useful to consider its microscale
counterpart. This balance is typically ignored in considering common line dynamics. Note that
although it is common to consider systems for which the water solid contact angle is taken to
be zero degrees, such a system would require that there be no common line tension. For
example, for a single vertical capillary tube, the normal curvature of the common line is 1/R so
that the microscale equation for the contact angle would be:

sin cw �
swns
Rswn

�86�

Thus if cw � 0, the lineal tension, swns must be zero. The macroscale equation derived here
indicates how the macroscale e�ective normal curvature of the common line and the e�ective
contact angle are related to the ¯uid±¯uid interfacial tension and the common line tension. The
e�ective quantity is obtained through Eq. (84f) as a change in the wn interfacial area density
with respect to the wns common line length density.
In addition to the equilibrium conditions obtained, this analysis provides information

concerning the number of independent variations of geometric densities that can be
accommodated at the macroscale. In fact, the form provided by Eq. (83) will prove to be of
great utility in supporting the analysis of the fully dynamic system. Gray (1999) has previously
obtained an approximation to Eq. (83), but the more complete form here also o�ers the
possibility of obtaining improved closure equations for the full description of multiphase ¯ow
in porous media.

10. Conclusion

Macroscale thermodynamic representation of two-phase ¯ow in porous media di�ers from
the representation at the microscale because geometric densities must be included in the
formulation as independent variables. The volume fractions of the system components, the
amounts of the various interfacial areas per unit volume, and the common line length per
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volume at a point contribute to the de®nition of the thermodynamic state at that point. A
variational analysis of the system thermodynamics has provided macroscale relations among
the pressures, surface tensions, lineal tension, e�ective contact angle, e�ective interfacial
curvatures, and e�ective common line curvature that must be satis®ed at the equilibrium state.
Additionally, information about the required relations among variations of the geometric
densities motivates the appropriate rearrangement of the dynamic entropy inequality such that
near-equilibrium, linearized equations for the geometric quantities may be obtained to close the
problem formulation. By basing the analysis of the changes of geometric parameters on a
variational approach rather than on investigation of the averaging theorems as in Gray (1999),
it is possible to reduce the number of approximations that must be made and therefore obtain
more complete dynamic equations for the geometric variables.
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Appendix. Derivation of variational relations

A.1. Derivation of variations for phase properties

Here the property of a phase will be considered. At the microscale, the amount of the
property per unit volume (i.e. the density of the property) will be denoted as ba: Since
averaging will be done to the macroscale, ba may be a function of the microscale
thermodynamic parameters of the system and of x� xxx, where x is the location of the centroid
of the averaging volume and xxx is the distance from this centroid to a microscale point of
interest. The macroscale density of the quantity for the a-phase will be denoted as B̂

a
: Note

that for convenience this quantity is de®ned per unit volume of the averaging volume, not just
per volume of a phase. The macroscale property B̂

a
is a function of the macroscale

thermodynamic parameters of the system and of the location of the averaging volume, x. The
total amount of the property of interest in volume V is denoted as Ba and is related to its
macroscale and microscale counterparts by:

Ba �
�

V
B̂
a
dV �

�
V

�
1

V

�
V a

ba dV

�
dV �A1�

where V is the averaging volume and V a is the volume occupied by the a-phase within the
averaging volume.
Now consider the variation of the ®rst equality in Eq. (A1). This may be expressed as:
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dBa � d
�

V
B̂
a

dV �A2�

The generalized function as employed in Gray et al. (1993) will be used here also to convert
the variation of the integral to the integral of a variation. For convenience, the generalized
function g�x� that has a value of 1 within the volume and zero elsewhere will be introduced to
convert the integral over the system volume to an integral over all space:

dBa � d
�

V1
B̂
a�x�g�x� dV �A3�

The dependence on spatial coordinates of quantities in the integrand is listed here just for
emphasis, but will not be included in subsequent forms. Because the integration volume is now
®xed in size and not subject to variations, the variation may be moved inside the integral to
obtain:

dBa �
�

V1
dB̂

a
g dV�

�
V1

B̂
a
dg dV �A4�

The variation dB̂
a
is in an integral whose integration region is unchanging. This is equivalent

to a ®xed point variation in the original volume of integration. Note that the location is ®xed
with respect to the x coordinate, and this ®xed point variation will be denoted as �d: In the
second integral on the right side, make use of the fact that:

dg � ÿdx � rxg �A5�
where rx is the nabla operator in terms of x coordinates so that Eq. (A4) now becomes:

dBa �
�
V

�dB̂
a

dVÿ
�
V1

B̂
a
dx � rxg dV �A6�

The quantity rxg in an integrand of a volume integral converts the integral to a boundary
integral such that:

dBa �
�

V
�dB̂

a
dV�

�
A
B̂
a
dx � n dA �A7�

where n is the unit normal pointing outward from the region of interest and A is the surface
bounding V.
Next it will be useful to obtain an expression for �dB̂

a
, the ®xed point macroscale variation

that appears in Eq. (A7) in terms of the variation at the microscale. From the equality in Eq.
(A1):

�dB̂
a � �d

�
1

V

�
V a

ba dV

�
�A8�

It is useful to emphasize that the variational operator �d is ®xed point with respect to the x
coordinate system but not with respect to the xxx coordinates. Introduce the distribution
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function ga�x� xxx� which is 1 in the a-phase and zero elsewhere and the distribution function
g�xxx� which is 1 within the averaging volume of interest and zero elsewhere. Because the
averaging volume shape, size, and orientation is independent of its location in space, g does
not depend on x. Thus the integral in Eq. (A8) can be written as being over all space according
to:

�dB̂
a � �d

�
1

V

�
V1

ba�x� xxx�ga�x� xxx�g�xxx� dV
�

�A9�

where the coordinate dependences have been explicitly indicated and the integration is over the
xxx coordinates. Since both V and the volume of integration are constant, the ®xed point
variational operator may be moved inside the integral to obtain:

�dB̂
a � 1

V

�
V1

�dbagag dV� 1

V1

�
V1

ba �dgag dV �A10�

where use has been made of the fact that a ®xed point variation of g�xxx� will be zero, which
physically corresponds to the condition of a non-varying averaging volume. The variation in
the ®rst integral converts to a ®xed point variation with respect to both x and xxx coordinates
when the integration region reverts back to the averaging volume, and the ®xed point variation
of ga is de®ned by:

�dga � ÿdxxx � rxxxga �A11�

Thus, Eq. (A10) becomes:

�dB̂
a � 1

V

�
V a

��dba dVÿ 1

V

�
V1

badxxx � rxxxgag dV �A12�

In the second integral, the quantity rxxxga converts integration over the volume to integration
over the interface between the a-phase and all other phases and g restricts the integral to the
interfaces within the averaging volume so that the expression for the variation is:

�dB̂
a � 1

V

�
V a

��dba dV�
X
b 6�a

1

V

�
Aab

badxxx � na
ab dA �A13�

where
��d is a variation with both spatial coordinates ®xed, Aab is the interface between the a-

and b-phases, and na
ab is the unit normal to the ab interface positive outward from the a-phase.

Combination of Eq. (A13) with Eq. (A7) for the case where the global volume does not
interact with its surroundings such that dx � n � 0 on A provides the variational equalities
essential to the study of mechanical equilibrium of phases:

dBa �
�

V
�dB̂

a
dV �

�
V

�
1

V

�
V a

��dba dV

�
dV�

�
V

"X
b6�a

1

V

�
Aab

badxxx � na
ab dA

#
dV �A14�
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A2. Derivation of variations for interface properties

Here the property of an interface will be considered. At the microscale, the amount of the
property per unit area (i.e. the density of the property) will be denoted as bab: Since averaging
will be done to the macroscale, bab will be a function of the thermodynamic parameters of the
interface and of the spatial position x� xxx, where x is the centroid of the averaging volume and
xxx is the distance from this centroid to the point on the surface. Of course, the dependence on
all three of the microscale coordinates of a surface property may be transformed to a
dependence on the two sur®cial coordinates. The macroscale density of the property for the ab
interface will be denoted as B̂

ab
: As for the phase, this quantity is de®ned per unit of averaging

volume. Thus B̂
ab

is the amount of interface property per averaging volume. The macroscale
property B̂

ab
may be a function of macroscale thermodynamic parameters of the averaging

volume and of x. Then the total amount of the property of interest is denoted as Bab and is
related to its microscale and macroscale counterparts by:

Bab �
�

V
B̂
ab
dV �

�
V

�
1

V

�
Aab

bab dA

�
dV �A15�

Now consider the variation of the ®rst equality in Eq. (A15). This may be expressed as:

dBab � d
�

V
B̂
ab

dV �A16�

The generalized function may be employed as previously in Eqs. (A3) through Eq. (A7) to
obtain:

dBab �
�

V
�dB̂

ab
dV�

�
A
B̂
ab
dx � n dA �A17�

where n is the unit normal positive outward on the surface of the region of interest.
Next it will be useful to obtain an expression for �dB̂

ab
, the ®xed point macroscale variation

that appears in Eq. (A17), in terms of the variation at the microscale. The derivation is
di�erent from that for a phase. From the equality in Eq. (A15):

�dB̂
ab � �d

�
1

V

�
Aab

ba dA

�
�A18�

Introduce the surface distribution function gab�x� xxx� which is 1 on the ab interface and zero
elsewhere on a closed surface enclosing the a phase. Also employ g�xxx� which is 1 within the
averaging volume of interest and zero elsewhere. Thus, Eq. (A18) becomes:

�dB̂
ab � �d

�
1

V

�
A1

bab�x� xxx�gab�x� xxx�g�xxx� dA
�

�A19�

where A1 is the boundary of the constructed closed volume. This surface integral may be
converted to a volume integral over all space using the distribution function ga�x� xxx� as in
Gray et al. (1993) to obtain:
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�dB̂
ab � ÿ�d

�
1

V

�
V1

bab�x� xxx�gab�x� xxx�g�xxx�na
ab�x� xxx� � rxxxga�x� xxx� dV

�
�A20�

where the coordinate dependences have been explicitly indicated and integration is over the xxx
coordinates. The ®xed point variational operator may be moved inside the integral since the
volume is constant to obtain:

�dB̂
ab � ÿ 1

V

�
V1

�dbabgabgna
ab � rxxxga dVÿ 1

V

�
V1

bab �dgabgna
ab � rxxxga dV

ÿ 1

V

�
V1

babgabgna
ab � �d

ÿrxxxga� dV �A21�

where use has been made of the facts that �dg�xxx� � 0 because the averaging volume is
constrained to be ®xed and that �dna

ab � rxxxga � 0 because na
ab and rxxxga are co-linear. The

variation in the ®rst integral converts to a ®xed point variation with respect to the x and xxx
coordinates when the integration region reverts back to the integration area. The ®xed point
variation of gab is de®ned analogously to the ®xed point variation of ga in Eq. (A11):

�dgab � ÿdxxx � rs
xxxg

ab �A22�

where rs
xxx is the surface gradient operator. Thus, Eq. (A21) becomes:

�dB̂
ab � 1

V

�
Aab

��dbab dA� 1

V

�
V1

babdxxx � rs
xxxg

abgna
ab � rxxxga dV

� 1

V

�
V1

babgabgna
ab � rxxx

ÿ
dxxx � rxxxga

�
dV

�A23�

In the second integral, the quantity rxxxga converts the domain of integration from the volume
to the ab interface, and the quantity rs

xxxg
ab converts the domain of integration to the common

line. Thus the equation simpli®es to:

�dB̂
ab � 1

V

�
Aab

��dbab dA� 1

V

�
C wns

babdxxx � nnnabwns dC

� 1

V

�
V1

babgabgna
ab � rxxx

ÿ
dxxx � rxxxga

�
dV

�A24�

where C wns is the common line within the averaging volume and nnnabwns is a unit vector normal to
the common line and tangent to the ab interface positive outward from the interface. The last
integral in this equation requires some particular attention. Apply the divergence theorem to
this term and note that the integral over the surface at in®nity will be zero so that:

1

V

�
V1

babgabgna
ab � rxxx

ÿ
dxxx � rxxxga

�
dV � ÿ 1

V

�
V1

dxxx � rxxxgarxxx �
�

na
abbabg

abg
�

dV �A25�

Then expand the divergence operator and return the integral over the in®nite volume to
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integrals over the appropriate surfaces and common line yielding:

1

V

�
V1

babgabgna
ab � rxxx

ÿ
dxxx � rxxxga

�
dV � 1

V

�
Aab

babrxxx � na
abdxxx � na

ab dA

� 1

V

�
Aab

dxxx � na
abna

ab � rxxxbab dAÿ 1

V

�
Cext

dxxx � na
ab
ÿ
na
ab � na�bab dC

�A26�

where Cext is the common line on the boundary of the averaging volume formed by the
intersection of the ab interface with this surface. Use has been made of the fact that na

ab � rgab
� 0: The last integral in this equation will be set to zero by requiring that the variational
analysis be performed with no exchange of work with regions outside the averaging volume
such that dxxx � na

ab � 0 on Cext: Substitution of Eq. (A26) into Eq. (A24) provides the equation
for the ®xed point variation:

�dB̂
ab � 1

V

�
Aab

�
��dbab � dxxx � na

abna
ab � rxxxbab

�
dA� 1

V

�
Aab

babrxxx � na
abdxxx � na

ab dA

� 1

V

�
C wns

babdxxx � nnnabwns dC �A27�

The second term in the ®rst integral in this equation accounts for variation due to movement
normal to the surface. Since the ®xed point variation is with all coordinates held constant, this
integrand suggests the de®nition:

��dsbab � ��dbab � dxxx � na
abna

ab � rxxxbab �A28�
where

��ds is a ®xed point variation with all the macroscale coordinates and the two surface
coordinates ®xed.
Combination of Eq. (A27) with Eq. (A17) for the case where the global volume does not

interact with its surroundings such that dx � n � 0 on A provides the variational equality
essential to the study of an interface in the three-phase system

dBab �
�

V
�dB̂

ab
dV �

�
V

�
1

V

�
Aab

��dsbab dA

�
dV

�
�

V

�
1

V

�
Aab

babrxxx � na
abdxxx � na

ab dA

�
dV�

�
V

�
1

V

�
C wns

babdxxx � nnnabwns dC

�
dV

�A29�

A3. Derivation of variations for common line properties

Here the property of a common line in a three-phase system will be considered. At the
microscale, the amount of the property per unit length (i.e. the density of the property) will be
denoted as bwns: The microscale unit vector tangent to the common line is designated as lll:
Since averaging is to be done to the macroscale, bwns will be a function of x� xxx, where x is the
centroid of the averaging volume and xxx is the distance from this centroid to the point on the
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common line, as well as of the thermodynamic parameters of the interface. The macroscale
density of the quantity for the wns common line will be denoted as B̂

wns
: As for the phase and

interface, this quantity is de®ned per unit of averaging volume. Thus B̂
wns

is the amount of
common line property per volume under study. The macroscale property B̂

wns
is a function of

x as well as the macroscale thermodynamic parameters of the system. Then the total amount
of the property of interest is denoted as Bwns and is related to its microscale and macroscale
counterparts by:

Bwns �
�

V
B̂
wns

dV �
�

V

�
1

V

�
C wns

bwns dC

�
dV �A30�

Now consider the variation of the ®rst equality in Eq. (A30). This may be expressed as:

dBwns � d
�

V
B̂
wns

dV �A31�

The generalized function may be employed as previously in Eqs. (A3)±(A7) to obtain:

dBwns �
�

V
�dB̂

wns
dV�

�
A
B̂
wns

dx � n dA �A32�

where n is the unit normal pointing outward from the region of interest.
Next it will be useful to obtain an expression for �dB̂

wns
, the ®xed point macroscale variation

that appears in Eq. (A32), in terms of the variation at the microscale. The derivation is
di�erent from that for phases and interfaces. From the equality in Eq. (A30):

�dB̂
wns � �d

�
1

V

�
C wns

bwns dC

�
�A33�

Introduce the lineal distribution function gwns�x� xxx� which is 1 on the wns line and zero
elsewhere on a closed curve enclosing the boundary of the a phase. Also employ g�x� which is 1
within the averaging volume of interest and zero elsewhere. Thus Eq. (A33) becomes:

�dB̂
wns � �d

�
1

V

�
C1

bwns�x� xxx�gwns�x� xxx�g�xxx� dC
�

�A34�

This curve integral may be converted to a volume integral over all space using the distribution
functions gab�x� xxx� and ga�x� xxx� as in Gray et al. (1993) for arbitrary selection of the phase a
and the interface ab to obtain:

�dB̂
wns �

�d
�
1

V

�
V1

bwns�x� xxx�gwns�x� xxx�g�xxx�nnnab�x� xxx� � rxxxgab�x� xxx�na
ab�x� xxx� � rxxxga�x� xxx� dV

�
�A35�

where the coordinate dependences have been explicitly indicated. Manipulations of this
equation are completely analogous to but lengthier than those performed previously. In the
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derivation, the condition is applied to ensure no exchange of mechanical work with the
surroundings that dxxx � lll � 0 at the locations where the common line pierces the surface of the
averaging volume. The equation obtained for the ®xed point variation is:

�dB̂
wns � 1

V

�
C wns

��dcbwns dCÿ 1

V

�
C wns

bwnslll � rxxxlll � dxxx dC �A36�

where the ®xed point variation indicated is one with the macroscale x and microscale lll
coordinates ®xed such that:

��dcbwns � ��dbwns � dxxx � rxxxbwns ÿ dxxx � llllll � rbwns �A37�
Combination of Eq. (A36) with Eq. (A32) for the case where the global volume does not
interact with its surroundings such that dx � n � 0 on A provides the variational equalities
essential to the study of common lines for the three-phase system:

dBwns �
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�dB̂
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�
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�
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��dcbwns dC
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ÿ
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bwnslll � rxxxlll � dxxx dC

�
dV

�A38�
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